SEJARAH NANOTEKNOLOGI
Sesuai dengan namanya, nanoteknologi adalah ilmu pengetahuan teknologi dengan skala nanometer. Nanoteknologi ini merupakan teknologi masa depan. Hal ini dibuktikan dengan adanya nanoteknologi, semua kebutuhan manusia dapat terselesaikan. Sejumlah terobosan yang penting terjadi di dalam nanoteknologi. Pengembangan ini ditemukan dan digunakan di dalam aplikasi produk di seluruh dunia di sepanjang abad sekarang ini. Beberapa contoh adalah konvertor katalitis di dalam mobil yang membantu memindahkan air pengotor, alat di dalam komputer yang berfungsi untuk membaca dan merekam dalam komponen hard-disk, sunscreens tertentu, kosmetik yang dapat menghalangi radiasi berbahaya dari matahari, pakaian mantel khusus untuk sports yang mampu meningkatkan performen atlet. Meski demikian, banyak ilmuwan, insinyur, dan teknolog percaya bahwa mereka hanya memanfaatkan sebagian permukaan dari potensi nanoteknologi.

Pengembangan nanoteknologi dewasa ini berdampak luar biasa, karena itu negara-negara maju berlomba-lomba mengalokasikan dana untuk berinvestasi mengembangkan teknologi material berukuran mini itu. Partikel baru yang sangat halus itu akan mempunyai sifat-sifat dan penampilan yang jauh lebih baik dan berbeda dengan material aslinya, misalnya teknik pembuatan peralatan elektronik dari semikonduktor silikon yang dibentuk sesuai pola tertentu dan teknologi layer. Ilmuwan yang terkenal dalam konsep nanoteknologi adalah K.E. Drexler. Drexler mengembangkan nanoteknologi molekular dengan meniru apa yang terjadi pada sel. Hukum ini selanjutnya disebut Drexlerian Nanoteknologi dengan idenya yang disebut assembler. Assembler ini bertindak seperti tangan robot pada pabrik skala makro, yang menaruh atom/molekul pada tempat yang diinginkan.

Selanjutnya dengan menggunakan assembler-assembler level awal yang menyusul blok bangunan berupa atom, assembler-assembler pada ukuran yang lebih besar dibangun. Pada ukuran ini, blok bangunannya berupa molekul. Kemudian assembler yang lebih besar dibangun, dan seterusnya hingga produk-produk biasa berukuran makro dapat terbuat. Perbedaan dengan metode konvensional adalah, produk nanoteknologi molekular ini lebih kuat, prosesnya hemat energi dan presisinya hingga level atom. Untuk mempermudah prosesnya, assembler-assembler tingkat awal dilengkapi dengan kemampuan swa-replikasi (self-replication).

PERKEMBANGAN NANOTEKNOLOGI

Jepang dan AS merupakan dua negara terdepan dalam riset nanoteknologi. Berdasarkan data tahun 2002, pemerintah Jepang mengeluarkan dana riset US$1 miliar, sementara AS US$550 juta, dan Uni Eropa US$450 juta. Jepang memulai risetnya pada 1985. Untuk itu pemerintah Jepang, melalui Federasi Organisasi Ekonomi Jepang, Kaidanren, membentuk Expert Group on Nanotechnology sebagai motor penelitian nanoteknologi. AS mulai serius mengembangkan nanoteknologi di era Bill Clinton, yang tahun 2000 lalu mendirikan National Nanotechnology Initiative.  Selain badan pemerintahan, perusahaan swasta juga serius mengadakan riset pengembangan nanoteknologi. IBM, misalnya, melalui IBM Zurich Research Laboratory yang dipimpin oleh Petter Yettiger dan Gerd Binning, sedang mengembangkan instrumen penyimpan data sebesar jarum nano dengan teknik scanning tunneling microscope. Dengan teknologi ini, IBM mampu menyimpan 25 juta halaman buku dalam alat penyimpanan yang ukurannya hanya sebesar perangko (bandingkan dengan hard disk yang ada saat ini). Prototipe alat penyimpan data ini akan dinamakan Millipede. Tak mau kalah, Intel Corporation pun mengembangkan prosesor yang memiliki kemampuan sepuluh kali lipat dibanding Pentium 4, yang rencananya dilepas ke pasar pada 2007.

Perkembangan Nanoteknologi

Nanoteknologi merupakan salah satu teknologi yang sedang berkembang di berbagai negara di dunia. Perkembangan teknologi nano atau nanoteknologi ini terletak pada ukurannya yang semakin mengecil hingga berukuran 10^-9 mikrometer atau 10^-3 mikrometer, lebih kecil dari ukuran bakteri yang hanya 1-100 mikrometer. Seperti yang sudah disinggung sebelumnya, nanoteknologi sedang berkembang. Beberapa perkembangannya adalah sebagai berikut,

1. Nanokomposit

Prinsip dari pembuatan nanokomposit ini adalah berkat ikatan-ikatan yang terjadi antara atom C, O, dan atom lainnya. Karena ikatan sudah dilakukan mulai dari bentuk Nano, maka akan menghasilkan suatu material yang lebih kuat pada saat menjadi material yang berukuran besar (tampak oleh mata). Nanokomposit digunakan pada plastik, dipelopori oleh pabrik mobil General Motor dan Toyota. Plastik akan lebih tahan gores, ringan-kuat, sehingga mengurangi beban mobil dan mengurangi biaya bahan bakar, umur pemakaian lebih panjang. Toyota telah mempergunakan sejak 2001 untuk bumper, dapat mengurangi berat hingga 60% dan dua kali lebih tahan benturan dan gores. Industri transportasi akan dapat menarik keuntungan dari penggunaan nanokomposit ini. Nanoclay dapat meningkatkan ketahanan akan permeabilitas sehingga bagus untuk penggunaan pengemas makanan dan minuman. Selain itu nanoclay juga dapat dipergunakan untuk mengurangi kemudahan plastik untuk terbakar. Nanoclay dilapisi dengan butyl rubber membuat bola tennis lebih memantul dan tahan lama.

2. Nanokristal

Logam nanokristal mempunyai kekuatan mekanik lebih tinggi, lebih tahan gores, sehingga dapat digunakan sebagai ‘bearing’ atau alat lain seperti komponen kompoter, sensor dan lainnya. Kekerasan logam meningkat dua hingga tiga kali lipat. Nano kristal juga dapat mengabsorb dan memancarkan cahaya dengan berbeda warna (Quantum DotTM). Nanosilver telah dipasarkan, dapat dimasukkan kedalam polimer, tekstil, dapat membunuh bakteri dalam waktu 30 menit. Nano kristal dapat mengabsorb cahaya matahari lebih bagus sehingga dapat dipergunakan untuk alat potovoltaik.

3. Nanopartikel

Dipergunakan pencegah kotor pada pakaian dimana pada permukaan direkatkan bulu-bulu dengan ukuran nano sehingga mirip permukaan daun talas. Polimer ukuran nano mulai dari 10 nm hingga 100 nm dipergunakan untuk cat tembok luar, perekat, pelapis kertas, pelapis kain, juga kosmetik sebagai penahan sinar UV. Penahan cahaya matahari juga merupakan contoh penggunaan nanopartikel. Karena ukuran yang kecil sehingga mudah didespersikan dan mengabsurb sinar UV. Penggunaan penahan cahaya ini sangat luas di Australia hingga menguasai pasar 60%. Nanopartikel alumunium dipergunakan untuk campuran propelan (bahan bakar) dapat mempercepat pembakaran hingga dua kali lipat. Nano tembaga dicampurkan minyak pelumas untuk mencegah keausan mesin. Nano kalsium dan posfat komposit dipergunakan sebagai tulang sintetis sebagai penggan tulang manusia.

4. Bahan Nanostruktur

Nanodyne membuat logam paduan dengan sintering komposit bubuk dari Tunsten-karbida-kobalt yang mempunyai ukuran partikel 15 nm. Diperoleh bahan mempunyai kekerasan sama dengan intan dan dipergunakan untuk alat pemotong, bor, bahan mesin jet, bahan tahan peluru. Kodak memproduksi OLED (‘organic light emitting diode’) layar berwarna sehingga memungkinkan diperolehnya layar yang lebih tipis, lentur, kurang konsumsi enerji untuk layar komputer, telepon genggam, televisi dan alinnya. OLED diharapkan dapat menggantikan Tabung TV, LCD (liquid crystal display).

5. Nanotubes

Mirip dengan serat mempunyai diameter beberapa nanometer, sangat kuat, bersifat konduktor, dapat pejal atau beronggar. Carbon nanotube berdasarkan emisi elektron dapat dipergunakan pula untuk layar monitor monokrom. Dari BBC News dilaporkan: riset sedang dikembangkan nanotube dengan lebar separuh molekul DNA dipergunakan untuk menyalurkan cahaya ‘near-infra red’ dari laser ke sel kanker. Kemudian jaringan kangker dipanaskan dengan cahaya tersebut hingga 70 oC dalam waktu 2 menit dan sel menjadi rusak. Jika berhasil cara ini akan menggantikan penggunaan kemoterapi yang merontokan rambut.

6. Nanokatalis

Katalis skala nano berbasis gel dapat dipergunakan untuk mencairkan batu bara yang kemudian dijadikan minyak disel, bensin. Cara ini disukai karena dapat mengurangi kadar belerang pada penggunaan batubara. Ukuran nano mempunyai permukaan yang sangat luas. Sehingga sangat efektif, murah untuk dipakai sebagai katalis konverter pada mobil.

7. Nanofilter

Serat alumina ukuran nano dapat dipakai untuk menyaring partikel ukuran sangat kecil, 99,9999% virus dengan kecepatan aliran beberapa ratus kali lebih besar dibanding membran ultra filtrasi. Sehingga air minum tidak memerlukan sterilalisasi lagi.

APLIKASI NANOTEKNOLOGI

Aplikasi Nanoteknologi dalam Sistem Komunikasi Serat Optik

Dalam dasawarsa terakhir ini, kita sudah semakin terbiasa menggunakan internet dalam kehidupan sehari-hari. Di Indonesia, jasa internet sebagian besar tersedia melalui saluran telepon dengan beberapa alternatif lainnya seperti kabel modem, VSAT , internet nirkabel, dan ADSL . Meskipun pertumbuhan internet di Indonesia belakangan ini cukup suram berkat naiknya tarif telepon yang dimonopoli oleh Telkom, penggunaan internet diharapkan dapat bangkit seiring dengan tumbuhnya daya beli masyarakat di masa depan. Di negara-negara maju telah tersedia jasa fiber-to-the-home (FTTH) dimana data disalurkan melalui saluran serat optik ke rumah-rumah tangga. Dengan harga sekitar $50-$80/bulan, rumah tangga di Jepang dapat mengakses internet sampai dengan kecepatan 100Mbit/detik. Menggunakan teknologi dense-wavelength-division-multiplexing (DWDM), bandwidth (muatan informasi) dalam satu kabel serat dapat dinaikkan hingga beratus kali lipat. Contohnya, NTT Communications di Jepang pada bulan Juni 2003 ini meluncurkan servis baru sebagai tulang punggung untuk pasar enterprise/ISP dengan menggunakan teknologi DWDM yang memiliki kecepatan maksimal 10Gbit(109 bit)/detik. Seiring dengan perkembangan teknologi serat optik, jasa internet melalui medium ini diharapkan akan menjadi semakin luas dan terjangkau di negara-negara lainnya di masa depan.

Pada dasarnya, sistem komunikasi serat optik terdiri dari tiga bagian: pemancar (transmitter), saluran komunikasi, dan penerima (receiver). Transmitter (yang terdiri dari dioda laser dan LED) berfungsi mengubah sinyal elektronik ke dalam bentuk gelombang cahaya dan memasukkannya ke dalam serat optik. Dibandingkan kabel tembaga, sebatang kabel serat optik memiliki bandwidth lebih banyak (sampai dengan 1 Terabit/detik atau 1012 bit/detik), material loss yang rendah, tidak menghasilkan electromagnetik noise, dan juga tidak terpengaruhi oleh gelombang elektromagnetik dari luar (electromagnetic interference). Dilihat dari segi bandwidth, serat optik jelas jauh lebih unggul daripada kabel tembaga atau nirkabel/satelit. Penerima (photodetector) berfungsi mengubah sinyal cahaya kembali ke dalam bentuk elektronik. Alat-alat opto-elektronik yang dipakai dalam sistem serat optik sebagian besar terbuat daripada bahan semikonduktor, khususnya senyawa yang terbentuk dari unsur-unsur golongan III (seperti Ga) dan golongan V (seperti As). Senyawa-senyawa yang terbentuk dari elemen-elemen golongan III-V mempunyai bandgap langsung yang memudahkan transisi elektron dari band konduksi ke band valensi dengan menghasilkan photon pada prosesnya. Akhir-akhir ini, kemajuan dalam ilmu nanoteknologi, khususnya di bidang eksperimen, telah memungkinkan para ilmuwan untuk membuat struktur dalam skala nanometer.

Untuk pembuatan semikonduktor kristal yang bermutu tinggi, beberapa hal yang harus dipenuhi adalah: tersedianya single kristal tanpa cacat, kemampuan untuk mengontrol ketebalan lapisan tipis (film) sampai dengan skala nanometer, dan kemampuan untuk dapat membentuk satu jenis bahan (contohnya GaN) di atas jenis bahan lainnya (contohnya AlN) dengan komposisi yang akurat serta transisi yang mulus dalam skala atom (atomically-abrupt interface). Saat ini teknologi yang umumnya dipakai untuk pembuatan discrete devices yang memerlukan kontrol dalam skala nanometer (seperti dioda laser) adalah Metal-Organic Vapor Phase Deposition (MOVPE). Pada intinya, unsur-unsur golongan III (seperti Al, Ga, In) dalam bentuk senyawa alkil (trimetil-aluminium/TMAl, TMGa, TMIn) yang dibawa oleh gas hydrogen dan elemen-elemen golongan V dalam bentuk hydride (gas-gas paling berbahaya seperti AsH3) dimasukkan ke dalam silinder quartz di dalam reaktor MOVPE dengan aliran yang dikontrol oleh komputer.

Aplikasi  dalam kehidupan sehari-hari

Pada dasarnya, nanoteknologi ialah peluasan sains yang sedia ada pada skala nano. Salah satu aspek skala nano yang terpenting adalah bahwa semakin objek-objek menjadi kecil, semakin besar nisbahnya antara luas permukaan dengan isi padu. Fenomena ini telah memungkinkan penciptaan bahan-bahan yang menarik serta penggunaan-penggunaan yang baru. Umpamanya, bahan-bahan yang legap menjadi Lut Sinar ( tembaga ), bahan-bahan yang stabil menjadi bahan boleh bakar seperti aluminium, pepejal menjadi cecair pada suhu bilik seperti emas, dan yang terjadi pd silikon.

Nanoteknologi telah diaplikasikan pada produk-produk antara lain:

1.   Pada tekstil dan pakaian.
Dengan nanopartikel tekstil dan pakaian akan menjadi mudah dibersihkan dan dengan penambahan silver pada kaos kaki akan membuat nya mempunyai pengaruh pada pengurangan bau kaki. Tetapi akhir-akhir ini para peneliti mengingatkan bahwa tidak semua produk kaos kali yang mengandung perak akan aman bagi lingkungan. Hal ini karena pada saat pencucian, pada produk yang kurang bagus, perak akan terikut ke air cucian. Hal ini bisa menyebabkan efek negatif pada biota air. Selain perak, TiO2 diguanakan juga pada UV cut. Contoh yang umum di pakai adalah pada payung.

2.   Produk perawatan.
TiO3 dan SiO2 digunakan sebagai UV cut sementara apatite digunakan pada pasta gigi. Perak digunakan pada plester untuk mencegah infeksi dan emas nanopartikel digunakan pada tes kehamilan.

3.   Olahraga.
Nanopartikel digunakan untuk membuat peralatan olahraga menjadi lebih kuat, lebih baik dan berdaya guna tinggi. Contohnya pada raket merk Yonex yang menggunakan serat carbon.

4.   Perbaikan rumah.
Titania digunakan pada cat genting untuk membuat memberi efek pembersihan sendiri.

5.   Produk Rumah tangga.
Digunakan pada gelas, keramik, sepatu untuk berbagai macam pelapisan.
MANFAAT NANOTEKNOLOGI DALAM KEHIDUPAN MANUSIA

1. Bidang Kesehatan
Dalam bidang kesehatan, melalui nanoteknologi dapat diciptakan “mesin nano” yang disuntikan ke dalam tubuh guna memperbaiki jaringan atau organ tubuh yang rusak. Penderita hipertensi, misalnya, kini tak perlu lagi disuntik atau mengonsumsi obat, cukup hanya disemprot saja ke bagian tubuh tertentu. Nanoteknologi mencakup pengembangan teknologi dalam skala nanometer, biasanya 0,1 sampai 100 nm (satu nanometer sama dengan seperseribu mikrometer atau sepersejuta milimeter). Untuk industri logam, dapat diciptakan sebuah materi logam alternatif yang murah, ringan dan efisien, yang dapat menekan biaya produksi kendaraan, mesin dan lainnya. Nanoteknologi telah dapat merekayasa obat hingga dapat mencapai sasaran dengan dosis yang tepat, termasuk peluang untuk mengatasi penyakit-penyakit berat seperti tumor, kanker, HIV dan lain lain.

2. Bidang Industri
Aplikasi nanoteknologi dalam industri sangat luas. Dengan nanoteknologi, kita bisa membuat pesawat ruang angkasa dari bahan komposit yang sangat ringan tetapi memiliki kekuatan seperti baja. Kita juga bisa memproduksi mobil yang beratnya hanya 50 kilogram. Industri fashion pun tidak ketinggalan. Mantel hangat yang sangat tipis dan ringan bisa menjadi tren di masa mendatang dengan bantuan nanoteknologi.
Berbagai terobosan dapat dilakukan dengan nanoteknologi untuk menggantikan bahan baku industri yang kian langka. Jepang, misalnya, pada 1997 membuat proyek ultra baja untuk mengembangkan teknologi konservasi baja. Baja super ini dilaporkan memiliki kekuatan dua kali lipat dari baja biasa, sehingga pemakaiannya dapat lebih efisien. Hal ini dapat menjadi solusi bagi krisis baja yang melanda dunia beberapa bulan terakhir akibat melonjak tajamnya permintaan baja dari Cina.Diperkirakan tahun 2010, produk-produk industri dalam skala apa pun akan menggunakan material hasil rekayasa nanoteknologi. Tidak heran kalau Bill Clinton-saat menjabat Presiden AS-sejak 1993 telah menginstruksikan kepada National Science and Technology Council (NSTC) untuk meriset bidang nanoteknologi ini. (dapat dilihat di http://www.whitehouse.gov/WH/EOP/OSTP/ NSTC/).Perkembangan pesat ini akan mengubah wajah teknologi pada umumnya karena nanoteknologi merambah semua bidang ilmu. Tidak hanya bidang rekayasa material seperti komposit, polimer, keramik, supermagnet, dan lain-lain. Bidang-bidang seperti biologi (terutama genetika dan biologi molekul lainnya), kimia bahan dan rekayasa akan turut maju pesat. Misalnya, manusia akan mengecat mobil dengan cat nanopartikel yang mampu memantulkan panas sehingga kendaraan tetap sejuk walau diparkir di panas terik matahari. Atau, kawat tembaga akan sangat jarang digunakan (terutama dalam hardware computer) karena digantikan dengan konduktor nanokarbon yang lebih tinggi konduktivitasnya.

3.Bidang Luar Angkasa

Nanoteknologi juga sudah berhasil menyodorkan suatu material hebat yang sangat ringan, tetapi kekuatannya 100 kali lebih kuat dari baja! Material hebat ini diberi nama Carbon Nano-Tube (CNT). Material ini hanya tersusun dari atom karbon (C), seperti grafit dan berlian.
Kuat tetapi sangat ringan sehingga menara dapat dibuat lebih tinggi dan kabel dapat dibuat lebih panjang dan kuat tanpa takut jatuh/roboh karena beratnya sendiri. Hal berikut yang sangat dibutuhkan adalah sesuatu yang cukup berat yang mengorbit mengelilingi bumi. Asteroid dapat dimanfaatkan untuk tujuan ini! Asteroid ini berfungsi sebagai beban yang menstabilkan kabel serta satelit geostasioner yang sedang mengorbit itu. Tanpa beban penstabil (counterweight), kabel dan satelit bisa jatuh menimpa bumi karena tertarik gravitasi, walaupun bahan konstruksinya merupakan material yang sangat ringan. Asteroid ini nantinya dihubungkan dengan satelit menggunakan kabel yang sama. Asteroid ini dapat diarahkan supaya mengorbit pada ketinggian tertentu mengelilingi bumi dengan cara menembaknya dengan rudal. Tabrakan dengan rudal tersebut dapat menggeser posisi asteroid sehingga berada pada jangkauan gravitasi bumi. Dengan demikian asteroid akan terus mengorbit mengelilingi bumi pada ketinggian yang sama. Rencana konstruksi bangunan dan lintasan/kabelnya tampaknya sudah cukup baik. Lalu bagaimana dengan ‘lift’nya sendiri? Yang pasti bentuknya tidak sama dengan lift yang biasa kita lihat di gedung-gedung bertingkat. Lift ke luar angkasa ini berupa sebuah pesawat luar angkasa yang akan membawa penumpang dari bumi menuju satelit yang sedang mengorbit. Pesawat ini berbeda dengan pesawat luar angkasa yang saat ini digunakan para astronot untuk menjalankan misi-misi mereka.

4 . Bidang Teknologi Tahan Gempa
Nanoteknologi jadikan beton kokoh dan tahan gempa. Konstruksi bangunan menjadi dua kali lebih kokoh, tahan gempa, kedap air laut dengan ditemukannya bahan konstruksi nanosilika, suatu jenis mineral yang melimpah ruah di Indonesia dan diolah melalui teknologi nano.Dengan mencampur beton dengan 10 persen bahan nano-silica, kekuatan bertambah menjadi dua kali lipatnya.

5.  Bidang Teknologi Informasi
Dunia informatika dan komputer/elektronik bisa menikmati adanya kuantum yang mampu mengirimkan data dengan kecepatan sangat tinggi. Superkomputer di masa depan tersusun dari chip yang sangat mungil, tetapi mampu menyimpan data jutaan kali lebih banyak dari komputer yang kita gunakan saat ini. Begitu kecilnya superkomputer itu, kita mungkin hanya bisa melihatnya dengan menggunakan mikroskop cahaya/elektron. Peran teknologi nano dalam pengembangan teknologi informasi (IT,information technology), sudah tidak diragukan lagi. Bertambahnya kecepatan komputer dari waktu ke waktu, meningkatnya kapasitas hardisk dan memori, semakin kecil dan bertambahnya fungsi telepon genggam, adalah contoh-contoh kongkrit produk teknologi nano di bidang IT.

Gambaran mudahnya, bila ukuran satu buah transistor bisa dibuat lebih kecil maka kepadatan jumlah transistor pada ukuran chip yang sama secara otomatis akan menjadi lebih besar. Dalam pembuatan LSI (large scale integrated sedapat mungkin jumlah transistor dalam satu chip bisa diperbanyak. Sebagai contoh, tahun 2005, INTEL berhasil meluncurkan 70 Megabit SRAM (static random access memory) yang dibuat dengan teknologi nano proses tipe 65 nanometer (nm). Pada produk baru ini, di dalam satu chip berisi lebih dari 500 juta buah transistor, dimana lebih maju dibanding teknologi processor tipe 90 nm yang dalam satu chipnya berisi kurang lebih 200 juta transistor. Diperkirakan ke depannya, sejalan dengan terus majunya teknologi nano, ukuran transistor terus akan mengecil sesuai dengan hukum Moore dan processor tipe 45 nm akan masuk pasar tahun 2007, dan selanjutnya tahun 2009 akan processor 32 nm.

ETIKA DALAM PENERAPAN NANOTEKNOLOGI
Perkembangan nanoteknologi pada saat ini terus berkembang seiring dengan sejalannya waktu. Nanoteknologi akan terus mengalami kemajuan karena manusia akan selalu berpikir kritis dan kreatif untuk menciptakan nanoteknologi.
Semakin berkembangnya nanoteknologi maka semakin diperlukannya penerapan etika dalam perkembangan nanoteknologi. Etika dalam nanoteknologi mencakup penerapan standar-standar etika dalam pemilihan, perencanaan, penerapan, dan pengawasan teknologi untuk mencegah terjadinya kegagalan teknologi yang merugikan kepentingan publik. Selain itu, dengan adanya etika atau suatu langkah yang benar dalam menciptakan nanoteknologi, manusia dapat mempertimbangkan keputusan yang diambil dan berfikir dampak negative yang akan ditimbulkan sehingga tidak merugikan banyak pihak.
Pada saat ini banyak para ahli science yang menciptakan nanoteknologi hanya berorientasi pada kebutuhan industri tanpa pernah peduli akibat dari teknologi yang mereka gunakan di masyarakat. Berikut ini merupakan contoh dari tidak diterapkannya etika dalam menciptakan nanoteknologi ialah cloning dan suntik mati.
Standar etika sangat diperlukan bagi scientist dalam membuat keputusan agar tidak mengakibatkan masalah yang merugikan banyak pihak.

Sumber :

http://alumnisaf.blogspot.com/2008/04/nanoteknologi.html

http://www.chem-is-try.org/artikel_kimia/kimia_material/aplikasi_nanoteknologi_dalam_sistem_komunikasi_serat_optik/

http://fisikaunlam.blogspot.com/2009/12/aplikasi-nanoteknologi-dalam-kehidupan.html

http://www.kennylischer.com/2009/08/perkembangan-nanoteknologi.html

http://anitaapriliani.blogspot.com/